Introduction to FFT-based homogenization

Moulinec Hervé1 and Matthias Kabel2

1 Aix-Marseille Univ, CNRS, Centrale Marseille, LMA, F-13453 Marseille France, moulinec@lma.cnrs-mrs.fr
2 Departement Flow and Material Simulation, Fraunhofer ITWM, Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany, matthias.kabel@itwm.fraunhofer.de, www.itwm.fraunhofer.de

Keywords: FFT-based homogenization

In recent years, a growing interest has been observed toward spectral ”FFT-based” methods originally introduced in the 1990s for simulating the elastic response of heterogeneous materials. In this talk we will give at first a short introduction to the original method which is

- using a discretization by Fourier polynomials [6, 7]
- can be interpreted as gradient descent method [3]
- is applicable to linear an nonlinear problems [7] and
- can be combined with mixed boundary conditions (e.g. uniaxial tensile test) [5]

Afterwards, we will discuss recent improvements that

- accelerated the algorithm for linear problems by conjugate gradients (CG) [11] and for nonlinear problems by combining Newton-Raphson with CG [1],
- changed the discretization [10, 9, 8] to obtain robust convergence for infinite contrast and
- reduced the computational effort by using composite voxel [2, 4]

REFERENCES

