Fluid simulation at the micro and nano scale: some recent advances

Duncan A. Lockerby
University of Warwick, Coventy CV4 7AL, d.lockerby@warwick.ac.uk,
http://www.eng.warwick.ac.uk/staff/dal

Key Words: Microflows, nanoflows, multi-scale simulation.

Fluid flows at the micro and nano-scale are characterised by non-equilibrium and non-continuum effects that place them beyond the modelling scope of conventional Computational Fluid Dynamics (CFD). Typically, a molecular or particle treatment of the liquid or gas, and any bounding solid surface, is required to accurately resolve such flows. However, the cost of these particle-based simulations is prohibitively costly for all but the simplest geometries. In this semi-plenary talk a number of approaches are introduced: the ‘hybrid’ approach, which combines the efficiency of CFD with the accuracy of particle simulation [1-4]; extended hydrodynamics, whereby continuum equations are solved that reach beyond the scale limitations of the Navier-Stokes model [5-6]; and fluctuating hydrodynamics, where thermal noise is incorporated into continuum models to capture important nanoscale interfacial phenomena. The talk describes a body of collaborative research undertaken by groups at University of Warwick, Daresbury STFC and Edinburgh University (www.micronanoflows.ac.uk) funded in the UK by the EPSRC (EP/N016602/1; EP/K038664/1).