An FFT-Based Numerical Method for Elasto-Plastic Contact

Lucas Frérot∗1, Marc Bonnet2, Guillaume Anciaux1, Jean-François Molinari1

1 Laboratoire de Simulation en Mécanique des Solides, EPFL, Station 18 CH-1015 Lausanne, Switzerland
2 POEMS (UMR 7231 CNRS-ENSTA-INRIA), ENSTA Paristech, France
{lucas.frerot,guillaume.anciaux,jean-francois.molinari}@epfl.ch
marc.bonnet@ensta-paristech.fr

Keywords: Contact, Boundary Element Method, Integral Equation, Fast Fourier Transform, Plasticity

Contact of rough surfaces is of prime importance in the study of friction and wear. Numerical simulations are well suited for this non-linear problem, but natural surfaces being fractal [1], they have high discretization requirements. There is therefore a need for efficient numerical methods able to deal with non-linearities. With finite elements [2], it is necessary to discretize the volume of the solids in contact, increasing the computational cost. Efficient optimization methods [3, 4] for the contact problem with a boundary-element formulation based on the FFT algorithm [5] allow an economy of computational resources, as only the boundary of the solids is discretized. Extension of a boundary-element method for elasto-plastic contact is feasible [6], on the basis of a boundary-domain integral formulation. We present here a new version of this formulation that takes advantage of the FFT for a reduction of both algorithmic and memory complexity.

The method is based on our new derivation of the Mindlin [7] fundamental solution using a partial Fourier transform, similarly to [8]. This allows the computation of displacement gradients necessary for applying a Newton-Raphson iterative solver with a consistent tangent operator to the boundary-domain integral formulation [9]. We present an adaptation of this treatment that takes advantage of the FFT. The solver gives the plastic deformations, which are used to compute a new contact solution [6].

With this new method, we compare to models of elastic rough contact [10, 11] and elastic-saturated rough contact [12, 13], and quantify the effects of elasto-plasticity on the contact area and the distribution of contact clusters, the latter playing an important role in the characterization of wear of surfaces [14].

REFERENCES


