COUPLED PROBLEMS IN OPTIMISATION, CONTROL, AND UNCERTAINTY QUANTIFICATION

HERMANN G. MATTHIES*, ROGER OHAYON**, K. C. PARK***

* Technische Universität Braunschweig
Institute for Scientific Computing
Mühlenpförtstrasse 23, 38106 Braunschweig, Germany
wire@tu-braunschweig.de, www.wire.tu-bs.de

** Conservatoire National des Arts et Métiers
292 rue Saint-Martin, F-75141 Paris Cédex 03, France
roger.ohayon@cnam.fr, http://www.cnam.fr/

*** University of Colorado
Campus Box 429, Boulder, CO 80309 – 0429, USA
kcpark@colorado.edu, www.colorado.edu

Key words: multi-physics, prediction, identification, reduced order models

ABSTRACT

Multi-physics problems are often solved in a partitioned manner, leading to coupling algorithms in the prediction of the system’s behaviour. Now prediction is typically only the first step in many other tasks such as optimisation and control, as well as uncertainty computations such as extreme events and Bayesian updating and identification.

The Minisymposium is devoted – but not limited – to the following topics:

- coupling algorithms
- reduced order models (ROMs) ans sparse representations for coupled problems
- control of multi-physics coupled problems
- optimisation of coupled problems
- uncertainty quantification of coupled problems
- Bayesian identification with coupled problems